There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -12cos(x) + 2{(36{(cos(x))}^{2} + 325)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -12cos(x) + 2(36cos^{2}(x) + 325)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -12cos(x) + 2(36cos^{2}(x) + 325)^{\frac{1}{2}}\right)}{dx}\\=&-12*-sin(x) + 2(\frac{\frac{1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}})\\=&12sin(x) - \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12sin(x) - \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\right)}{dx}\\=&12cos(x) - 72(\frac{\frac{-1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}})sin(x)cos(x) - \frac{72cos(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} - \frac{72sin(x)*-sin(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\=&12cos(x) - \frac{2592sin^{2}(x)cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - \frac{72cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} + \frac{72sin^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !