Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ -12cos(x) + 2{(36{(cos(x))}^{2} + 325)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -12cos(x) + 2(36cos^{2}(x) + 325)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -12cos(x) + 2(36cos^{2}(x) + 325)^{\frac{1}{2}}\right)}{dx}\\=&-12*-sin(x) + 2(\frac{\frac{1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}})\\=&12sin(x) - \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12sin(x) - \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\right)}{dx}\\=&12cos(x) - 72(\frac{\frac{-1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}})sin(x)cos(x) - \frac{72cos(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} - \frac{72sin(x)*-sin(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\=&12cos(x) - \frac{2592sin^{2}(x)cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - \frac{72cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} + \frac{72sin^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12cos(x) - \frac{2592sin^{2}(x)cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - \frac{72cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} + \frac{72sin^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\right)}{dx}\\=&12*-sin(x) - 2592(\frac{\frac{-3}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{5}{2}}})sin^{2}(x)cos^{2}(x) - \frac{2592*2sin(x)cos(x)cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - \frac{2592sin^{2}(x)*-2cos(x)sin(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - 72(\frac{\frac{-1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}})cos^{2}(x) - \frac{72*-2cos(x)sin(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}} + 72(\frac{\frac{-1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}})sin^{2}(x) + \frac{72*2sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\=&-12sin(x) - \frac{279936sin^{3}(x)cos^{3}(x)}{(36cos^{2}(x) + 325)^{\frac{5}{2}}} - \frac{7776sin(x)cos^{3}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} + \frac{7776sin^{3}(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} + \frac{288sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return