There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {2}^{(e^{x}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(xe^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(xe^{x})}\right)}{dx}\\=&({2}^{(xe^{x})}((e^{x} + xe^{x})ln(2) + \frac{(xe^{x})(0)}{(2)}))\\=&{2}^{(xe^{x})}e^{x}ln(2) + x{2}^{(xe^{x})}e^{x}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {2}^{(xe^{x})}e^{x}ln(2) + x{2}^{(xe^{x})}e^{x}ln(2)\right)}{dx}\\=&({2}^{(xe^{x})}((e^{x} + xe^{x})ln(2) + \frac{(xe^{x})(0)}{(2)}))e^{x}ln(2) + {2}^{(xe^{x})}e^{x}ln(2) + \frac{{2}^{(xe^{x})}e^{x}*0}{(2)} + {2}^{(xe^{x})}e^{x}ln(2) + x({2}^{(xe^{x})}((e^{x} + xe^{x})ln(2) + \frac{(xe^{x})(0)}{(2)}))e^{x}ln(2) + x{2}^{(xe^{x})}e^{x}ln(2) + \frac{x{2}^{(xe^{x})}e^{x}*0}{(2)}\\=&{2}^{(xe^{x})}e^{{x}*{2}}ln^{2}(2) + 2x{2}^{(xe^{x})}e^{{x}*{2}}ln^{2}(2) + 2 * {2}^{(xe^{x})}e^{x}ln(2) + x^{2}{2}^{(xe^{x})}e^{{x}*{2}}ln^{2}(2) + x{2}^{(xe^{x})}e^{x}ln(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !