There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{s}^{3}}{(({s}^{2} + 1)({s}^{2} + 4))}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s^{3}}{(s^{4} + 5s^{2} + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s^{3}}{(s^{4} + 5s^{2} + 4)}\right)}{ds}\\=&(\frac{-(4s^{3} + 5*2s + 0)}{(s^{4} + 5s^{2} + 4)^{2}})s^{3} + \frac{3s^{2}}{(s^{4} + 5s^{2} + 4)}\\=&\frac{-4s^{6}}{(s^{4} + 5s^{2} + 4)^{2}} - \frac{10s^{4}}{(s^{4} + 5s^{2} + 4)^{2}} + \frac{3s^{2}}{(s^{4} + 5s^{2} + 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !