Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(200000 - 0.025x)}{(1 - x*0.00000001)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{0.025x}{(-0.00000001x + 1)} + \frac{200000}{(-0.00000001x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{0.025x}{(-0.00000001x + 1)} + \frac{200000}{(-0.00000001x + 1)}\right)}{dx}\\=& - 0.025(\frac{-(-0.00000001 + 0)}{(-0.00000001x + 1)^{2}})x - \frac{0.025}{(-0.00000001x + 1)} + 200000(\frac{-(-0.00000001 + 0)}{(-0.00000001x + 1)^{2}})\\=& - \frac{0.00000000025x}{(-0.00000001x + 1)(-0.00000001x + 1)} + \frac{0.002}{(-0.00000001x + 1)(-0.00000001x + 1)} - \frac{0.025}{(-0.00000001x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return