Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{2}ln(csc(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}ln(csc(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}ln(csc(x))\right)}{dx}\\=&2xln(csc(x)) + \frac{x^{2}*-csc(x)cot(x)}{(csc(x))}\\=&2xln(csc(x)) - x^{2}cot(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xln(csc(x)) - x^{2}cot(x)\right)}{dx}\\=&2ln(csc(x)) + \frac{2x*-csc(x)cot(x)}{(csc(x))} - 2xcot(x) - x^{2}*-csc^{2}(x)\\=&2ln(csc(x)) - 4xcot(x) + x^{2}csc^{2}(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return