There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{e}^{x}}{x} + x - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}}{x} + x - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}}{x} + x - ln(x)\right)}{dx}\\=&\frac{-{e}^{x}}{x^{2}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x} + 1 - \frac{1}{(x)}\\=&\frac{-{e}^{x}}{x^{2}} + \frac{{e}^{x}}{x} - \frac{1}{x} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{e}^{x}}{x^{2}} + \frac{{e}^{x}}{x} - \frac{1}{x} + 1\right)}{dx}\\=&\frac{--2{e}^{x}}{x^{3}} - \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} + \frac{-{e}^{x}}{x^{2}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x} - \frac{-1}{x^{2}} + 0\\=&\frac{2{e}^{x}}{x^{3}} - \frac{2{e}^{x}}{x^{2}} + \frac{{e}^{x}}{x} + \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !