There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -csc(x)cot(x) + \frac{1}{sin(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -cot(x)csc(x) + \frac{1}{sin(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -cot(x)csc(x) + \frac{1}{sin(x)}\right)}{dx}\\=&--csc^{2}(x)csc(x) - cot(x)*-csc(x)cot(x) + \frac{-cos(x)}{sin^{2}(x)}\\=&csc^{3}(x) + cot^{2}(x)csc(x) - \frac{cos(x)}{sin^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !