Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 0.2271 + \frac{0.8897}{(1 + {(\frac{x}{6.8416})}^{8.8146})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.8897}{(0.146164639850327x + 1)} + 0.2271\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.8897}{(0.146164639850327x + 1)} + 0.2271\right)}{dx}\\=&0.8897(\frac{-(0.146164639850327 + 0)}{(0.146164639850327x + 1)^{2}}) + 0\\=&\frac{-0.1300426800748}{(0.146164639850327x + 1)(0.146164639850327x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-0.1300426800748}{(0.146164639850327x + 1)(0.146164639850327x + 1)}\right)}{dx}\\=&\frac{-0.1300426800748(\frac{-(0.146164639850327 + 0)}{(0.146164639850327x + 1)^{2}})}{(0.146164639850327x + 1)} - \frac{0.130042680074836(\frac{-(0.146164639850327 + 0)}{(0.146164639850327x + 1)^{2}})}{(0.146164639850327x + 1)}\\=&\frac{0.0190076414983098}{(0.146164639850327x + 1)(0.146164639850327x + 1)(0.146164639850327x + 1)} + \frac{0.0190076414983098}{(0.146164639850327x + 1)(0.146164639850327x + 1)(0.146164639850327x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return