There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (xsin({x}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x^{2})\right)}{dx}\\=&sin(x^{2}) + xcos(x^{2})*2x\\=&sin(x^{2}) + 2x^{2}cos(x^{2})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(x^{2}) + 2x^{2}cos(x^{2})\right)}{dx}\\=&cos(x^{2})*2x + 2*2xcos(x^{2}) + 2x^{2}*-sin(x^{2})*2x\\=&6xcos(x^{2}) - 4x^{3}sin(x^{2})\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6xcos(x^{2}) - 4x^{3}sin(x^{2})\right)}{dx}\\=&6cos(x^{2}) + 6x*-sin(x^{2})*2x - 4*3x^{2}sin(x^{2}) - 4x^{3}cos(x^{2})*2x\\=&6cos(x^{2}) - 24x^{2}sin(x^{2}) - 8x^{4}cos(x^{2})\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6cos(x^{2}) - 24x^{2}sin(x^{2}) - 8x^{4}cos(x^{2})\right)}{dx}\\=&6*-sin(x^{2})*2x - 24*2xsin(x^{2}) - 24x^{2}cos(x^{2})*2x - 8*4x^{3}cos(x^{2}) - 8x^{4}*-sin(x^{2})*2x\\=&-60xsin(x^{2}) - 80x^{3}cos(x^{2}) + 16x^{5}sin(x^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !