There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 200arcsin(0.00687(x - 1600))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 200arcsin(0.00687x - 10.992)\right)}{dx}\\=&200(\frac{(0.00687 + 0)}{((1 - (0.00687x - 10.992)^{2})^{\frac{1}{2}})})\\=&\frac{1.374}{(-0.0000471969x^{2} + 0.07551504x + 0.07551504x - 119.824064)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1.374}{(-0.0000471969x^{2} + 0.07551504x + 0.07551504x - 119.824064)^{\frac{1}{2}}}\right)}{dx}\\=&1.374(\frac{-0.5(-0.0000471969*2x + 0.07551504 + 0.07551504 + 0)}{(-0.0000471969x^{2} + 0.07551504x + 0.07551504x - 119.824064)^{\frac{3}{2}}})\\=&\frac{0.0000648485406x}{(-0.0000471969x^{2} + 0.07551504x + 0.07551504x - 119.824064)^{\frac{3}{2}}} - \frac{0.10375766496}{(-0.0000471969x^{2} + 0.07551504x + 0.07551504x - 119.824064)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !