There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + 2sqrt({x}^{2} - 10sqrt(3)x + 100)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + 2sqrt(-10xsqrt(3) + x^{2} + 100)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + 2sqrt(-10xsqrt(3) + x^{2} + 100)\right)}{dx}\\=&1 + \frac{2(-10sqrt(3) - 10x*0*\frac{1}{2}*3^{\frac{1}{2}} + 2x + 0)*\frac{1}{2}}{(-10xsqrt(3) + x^{2} + 100)^{\frac{1}{2}}}\\=&\frac{-10sqrt(3)}{(-10xsqrt(3) + x^{2} + 100)^{\frac{1}{2}}} + \frac{2x}{(-10xsqrt(3) + x^{2} + 100)^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !