There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(s + 3)({s}^{2} + 2s + 2)}{(s + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s^{3}}{(s + 2)} + \frac{5s^{2}}{(s + 2)} + \frac{8s}{(s + 2)} + \frac{6}{(s + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s^{3}}{(s + 2)} + \frac{5s^{2}}{(s + 2)} + \frac{8s}{(s + 2)} + \frac{6}{(s + 2)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(s + 2)^{2}})s^{3} + 0 + 5(\frac{-(0 + 0)}{(s + 2)^{2}})s^{2} + 0 + 8(\frac{-(0 + 0)}{(s + 2)^{2}})s + 0 + 6(\frac{-(0 + 0)}{(s + 2)^{2}})\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !