There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4(1 + {x}^{4}){\frac{1}{(1 + x)}}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x^{4}}{(x + 1)^{4}} + \frac{4}{(x + 1)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x^{4}}{(x + 1)^{4}} + \frac{4}{(x + 1)^{4}}\right)}{dx}\\=&4(\frac{-4(1 + 0)}{(x + 1)^{5}})x^{4} + \frac{4*4x^{3}}{(x + 1)^{4}} + 4(\frac{-4(1 + 0)}{(x + 1)^{5}})\\=& - \frac{16x^{4}}{(x + 1)^{5}} + \frac{16x^{3}}{(x + 1)^{4}} - \frac{16}{(x + 1)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !