Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {{x}^{15600}}^{20000} + 2{x}^{5000}({x}^{3000000000000000})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3000000000005000} + x^{312000000}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3000000000005000} + x^{312000000}\right)}{dx}\\=&2*3000000000005000x^{3000000000004999} + 312000000x^{311999999}\\=&6000000000010000x^{3000000000004999} + 312000000x^{311999999}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6000000000010000x^{3000000000004999} + 312000000x^{311999999}\right)}{dx}\\=&6000000000010000*3000000000004999x^{3000000000004998} + 312000000*311999999x^{311999998}\\=&3805044275868322160x^{3000000000004998} + 97343999688000000x^{311999998}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 3805044275868322160x^{3000000000004998} + 97343999688000000x^{311999998}\right)}{dx}\\=&3805044275868322160*3000000000004998x^{3000000000004997} + 97343999688000000*311999998x^{311999997}\\=&2539808964803477664x^{3000000000004997} - 477541837571785728x^{311999997}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2539808964803477664x^{3000000000004997} - 477541837571785728x^{311999997}\right)}{dx}\\=&2539808964803477664*3000000000004997x^{3000000000004996} - 477541837571785728*311999997x^{311999996}\\=& - 7634917132527078624x^{3000000000004996} + 8721495254313176064x^{311999996}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return