Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sqrt(x)(sqrt(x) - sqrt(5))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - sqrt(x)sqrt(5) + sqrt(x)^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - sqrt(x)sqrt(5) + sqrt(x)^{2}\right)}{dx}\\=& - \frac{\frac{1}{2}sqrt(5)}{(x)^{\frac{1}{2}}} - sqrt(x)*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}}\\=& - \frac{sqrt(5)}{2x^{\frac{1}{2}}} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{sqrt(5)}{2x^{\frac{1}{2}}} + 1\right)}{dx}\\=& - \frac{\frac{-1}{2}sqrt(5)}{2x^{\frac{3}{2}}} - \frac{0*\frac{1}{2}*5^{\frac{1}{2}}}{2x^{\frac{1}{2}}} + 0\\=&\frac{sqrt(5)}{4x^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{sqrt(5)}{4x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{\frac{-3}{2}sqrt(5)}{4x^{\frac{5}{2}}} + \frac{0*\frac{1}{2}*5^{\frac{1}{2}}}{4x^{\frac{3}{2}}}\\=& - \frac{3sqrt(5)}{8x^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{3sqrt(5)}{8x^{\frac{5}{2}}}\right)}{dx}\\=& - \frac{3*\frac{-5}{2}sqrt(5)}{8x^{\frac{7}{2}}} - \frac{3*0*\frac{1}{2}*5^{\frac{1}{2}}}{8x^{\frac{5}{2}}}\\=&\frac{15sqrt(5)}{16x^{\frac{7}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return