Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {sqrt(x)}^{-15600}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(x)^{15600}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(x)^{15600}}\right)}{dx}\\=&\frac{-15600*\frac{1}{2}}{(x)^{\frac{15601}{2}}(x)^{\frac{1}{2}}}\\=&\frac{-7800}{x^{7801}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-7800}{x^{7801}}\right)}{dx}\\=&\frac{-7800*-7801}{x^{7802}}\\=&\frac{60847800}{x^{7802}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{60847800}{x^{7802}}\right)}{dx}\\=&\frac{60847800*-7802}{x^{7803}}\\=&\frac{-474734535600}{x^{7803}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-474734535600}{x^{7803}}\right)}{dx}\\=&\frac{-474734535600*-7803}{x^{7804}}\\=&\frac{3704353581286800}{x^{7804}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return