There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2qxq(x(2q) + 1)πx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4q^{3}πx^{3} + 2q^{2}πx^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4q^{3}πx^{3} + 2q^{2}πx^{2}\right)}{dx}\\=&4q^{3}π*3x^{2} + 2q^{2}π*2x\\=&12q^{3}πx^{2} + 4q^{2}πx\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12q^{3}πx^{2} + 4q^{2}πx\right)}{dx}\\=&12q^{3}π*2x + 4q^{2}π\\=&24q^{3}πx + 4q^{2}π\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !