Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{x} + sqrt(1 + {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x} + sqrt(x^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x} + sqrt(x^{2} + 1)\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}}\\=&{x}^{x}ln(x) + {x}^{x} + \frac{x}{(x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {x}^{x}ln(x) + {x}^{x} + \frac{x}{(x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{{x}^{x}}{(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + (\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})x + \frac{1}{(x^{2} + 1)^{\frac{1}{2}}}\\=&{x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + \frac{{x}^{x}}{x} + {x}^{x} - \frac{x^{2}}{(x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return