Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ d + \frac{(a - d)}{(1 + (\frac{x}{c})b)}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = d + \frac{a}{(\frac{xb}{c} + 1)} - \frac{d}{(\frac{xb}{c} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( d + \frac{a}{(\frac{xb}{c} + 1)} - \frac{d}{(\frac{xb}{c} + 1)}\right)}{da}\\=&0 + (\frac{-(0 + 0)}{(\frac{xb}{c} + 1)^{2}})a + \frac{1}{(\frac{xb}{c} + 1)} - (\frac{-(0 + 0)}{(\frac{xb}{c} + 1)^{2}})d + 0\\=&\frac{1}{(\frac{xb}{c} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return