There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{a}{2})log_{2}^{\frac{2}{a}}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}alog_{2}^{\frac{2}{a}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}alog_{2}^{\frac{2}{a}}\right)}{da}\\=&\frac{1}{2}log_{2}^{\frac{2}{a}} + \frac{1}{2}a(\frac{(\frac{(\frac{2*-1}{a^{2}})}{(\frac{2}{a})} - \frac{(0)log_{2}^{\frac{2}{a}}}{(2)})}{(ln(2))})\\=&\frac{log_{2}^{\frac{2}{a}}}{2} - \frac{1}{2ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !