There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{\frac{1}{2}}^{xx - 2x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{\frac{1}{2}}^{x^{2} - 2x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{\frac{1}{2}}^{x^{2} - 2x}\right)}{dx}\\=&(\frac{(\frac{(2x - 2)}{(x^{2} - 2x)} - \frac{(0)log_{\frac{1}{2}}^{x^{2} - 2x}}{(\frac{1}{2})})}{(ln(\frac{1}{2}))})\\=&\frac{2x}{(x^{2} - 2x)ln(\frac{1}{2})} - \frac{2}{(x^{2} - 2x)ln(\frac{1}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !