There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4sqrt(x) - 2sqrt(2)sqrt(1 - x) - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 2sqrt(2)sqrt(-x + 1) + 4sqrt(x) - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 2sqrt(2)sqrt(-x + 1) + 4sqrt(x) - ln(x)\right)}{dx}\\=& - 2*0*\frac{1}{2}*2^{\frac{1}{2}}sqrt(-x + 1) - \frac{2sqrt(2)(-1 + 0)*\frac{1}{2}}{(-x + 1)^{\frac{1}{2}}} + \frac{4*\frac{1}{2}}{(x)^{\frac{1}{2}}} - \frac{1}{(x)}\\=&\frac{sqrt(2)}{(-x + 1)^{\frac{1}{2}}} + \frac{2}{x^{\frac{1}{2}}} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !