There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(x - 1)}^{-5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x - 1)^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x - 1)^{5}}\right)}{dx}\\=&(\frac{-5(1 + 0)}{(x - 1)^{6}})\\=&\frac{-5}{(x - 1)^{6}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-5}{(x - 1)^{6}}\right)}{dx}\\=&-5(\frac{-6(1 + 0)}{(x - 1)^{7}})\\=&\frac{30}{(x - 1)^{7}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{30}{(x - 1)^{7}}\right)}{dx}\\=&30(\frac{-7(1 + 0)}{(x - 1)^{8}})\\=&\frac{-210}{(x - 1)^{8}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-210}{(x - 1)^{8}}\right)}{dx}\\=&-210(\frac{-8(1 + 0)}{(x - 1)^{9}})\\=&\frac{1680}{(x - 1)^{9}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !