Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (cos(x) - {e}^{{x}^{2}})sin({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x^{2})cos(x) - {e}^{x^{2}}sin(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x^{2})cos(x) - {e}^{x^{2}}sin(x^{2})\right)}{dx}\\=&cos(x^{2})*2xcos(x) + sin(x^{2})*-sin(x) - ({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))sin(x^{2}) - {e}^{x^{2}}cos(x^{2})*2x\\=&2xcos(x^{2})cos(x) - sin(x)sin(x^{2}) - 2x{e}^{x^{2}}sin(x^{2}) - 2x{e}^{x^{2}}cos(x^{2})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return