Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{A{x}^{2}} - log_{2}^{B{x}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{Ax^{2}} - log_{2}^{Bx^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{Ax^{2}} - log_{2}^{Bx^{2}}\right)}{dx}\\=&(\frac{(\frac{(A*2x)}{(Ax^{2})} - \frac{(0)log_{2}^{Ax^{2}}}{(2)})}{(ln(2))}) - (\frac{(\frac{(B*2x)}{(Bx^{2})} - \frac{(0)log_{2}^{Bx^{2}}}{(2)})}{(ln(2))})\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return