Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{x}^{2} + bx + c + dlog_{2}^{x}log_{2}^{x} + elog_{2}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2} + bx + c + d{\left(log_{2}^{x}\right)}^{2} + log_{2}^{x}e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2} + bx + c + d{\left(log_{2}^{x}\right)}^{2} + log_{2}^{x}e\right)}{dx}\\=&a*2x + b + 0 + d(\frac{2log_{2}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}) + (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))})e + log_{2}^{x}*0\\=&2ax + b + \frac{2dlog_{2}^{x}}{xln(2)} + \frac{e}{xln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return