There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (-4x - 2){\frac{1}{(2{x}^{2} + 2x + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-4x}{(2x^{2} + 2x + 1)^{2}} - \frac{2}{(2x^{2} + 2x + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-4x}{(2x^{2} + 2x + 1)^{2}} - \frac{2}{(2x^{2} + 2x + 1)^{2}}\right)}{dx}\\=&-4(\frac{-2(2*2x + 2 + 0)}{(2x^{2} + 2x + 1)^{3}})x - \frac{4}{(2x^{2} + 2x + 1)^{2}} - 2(\frac{-2(2*2x + 2 + 0)}{(2x^{2} + 2x + 1)^{3}})\\=&\frac{32x^{2}}{(2x^{2} + 2x + 1)^{3}} + \frac{32x}{(2x^{2} + 2x + 1)^{3}} - \frac{4}{(2x^{2} + 2x + 1)^{2}} + \frac{8}{(2x^{2} + 2x + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !