There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3{x}^{5}(6596{x}^{8} + 924{x}^{4} - 2856)}{(e^{2x} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{19788x^{13}}{(e^{2x} - 1)} + \frac{2772x^{9}}{(e^{2x} - 1)} - \frac{8568x^{5}}{(e^{2x} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{19788x^{13}}{(e^{2x} - 1)} + \frac{2772x^{9}}{(e^{2x} - 1)} - \frac{8568x^{5}}{(e^{2x} - 1)}\right)}{dx}\\=&19788(\frac{-(e^{2x}*2 + 0)}{(e^{2x} - 1)^{2}})x^{13} + \frac{19788*13x^{12}}{(e^{2x} - 1)} + 2772(\frac{-(e^{2x}*2 + 0)}{(e^{2x} - 1)^{2}})x^{9} + \frac{2772*9x^{8}}{(e^{2x} - 1)} - 8568(\frac{-(e^{2x}*2 + 0)}{(e^{2x} - 1)^{2}})x^{5} - \frac{8568*5x^{4}}{(e^{2x} - 1)}\\=&\frac{-39576x^{13}e^{2x}}{(e^{2x} - 1)^{2}} - \frac{5544x^{9}e^{2x}}{(e^{2x} - 1)^{2}} + \frac{17136x^{5}e^{2x}}{(e^{2x} - 1)^{2}} + \frac{24948x^{8}}{(e^{2x} - 1)} + \frac{257244x^{12}}{(e^{2x} - 1)} - \frac{42840x^{4}}{(e^{2x} - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !