There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({x}^{2} - (\frac{32}{5})x + 16)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} - \frac{32}{5}x + 16)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} - \frac{32}{5}x + 16)\right)}{dx}\\=&\frac{(2x - \frac{32}{5} + 0)*\frac{1}{2}}{(x^{2} - \frac{32}{5}x + 16)^{\frac{1}{2}}}\\=&\frac{x}{(x^{2} - \frac{32}{5}x + 16)^{\frac{1}{2}}} - \frac{16}{5(x^{2} - \frac{32}{5}x + 16)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !