There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(-100{\frac{1}{x}}^{2} - 100{x}^{2} + 6)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{-100}{x^{2}} - 100x^{2} + 6)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{-100}{x^{2}} - 100x^{2} + 6)\right)}{dx}\\=&\frac{(\frac{-100*-2}{x^{3}} - 100*2x + 0)*\frac{1}{2}}{(\frac{-100}{x^{2}} - 100x^{2} + 6)^{\frac{1}{2}}}\\=&\frac{100}{(\frac{-100}{x^{2}} - 100x^{2} + 6)^{\frac{1}{2}}x^{3}} - \frac{100x}{(\frac{-100}{x^{2}} - 100x^{2} + 6)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !