There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 6 + \frac{(6 - 1)}{(1 + (\frac{3}{10}{x}^{3}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5}{(\frac{3}{10}x^{3} + 1)} + 6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5}{(\frac{3}{10}x^{3} + 1)} + 6\right)}{dx}\\=&5(\frac{-(\frac{3}{10}*3x^{2} + 0)}{(\frac{3}{10}x^{3} + 1)^{2}}) + 0\\=&\frac{-9x^{2}}{2(\frac{3}{10}x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !