There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(lg(2)x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(xlg(2))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(xlg(2))}\right)}{dx}\\=&({x}^{(xlg(2))}((lg(2) + \frac{x*0}{ln{10}(2)})ln(x) + \frac{(xlg(2))(1)}{(x)}))\\=&{x}^{(xlg(2))}ln(x)lg(2) + {x}^{(xlg(2))}lg(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !