There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -0.752xxx + 0.382xx + 1908.1992x - 7698.29\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.752x^{3} + 0.382x^{2} + 1908.1992x - 7698.29\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.752x^{3} + 0.382x^{2} + 1908.1992x - 7698.29\right)}{dx}\\=&-0.752*3x^{2} + 0.382*2x + 1908.1992 + 0\\=&-2.256x^{2} + 0.764x + 1908.1992\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -2.256x^{2} + 0.764x + 1908.1992\right)}{dx}\\=&-2.256*2x + 0.764 + 0\\=&-4.512x + 0.764\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !