There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{(2 + cos(x))}{3})}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{1}{3}cos(x) + \frac{2}{3})^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{1}{3}cos(x) + \frac{2}{3})^{x}\right)}{dx}\\=&((\frac{1}{3}cos(x) + \frac{2}{3})^{x}((1)ln(\frac{1}{3}cos(x) + \frac{2}{3}) + \frac{(x)(\frac{1}{3}*-sin(x) + 0)}{(\frac{1}{3}cos(x) + \frac{2}{3})}))\\=&(\frac{1}{3}cos(x) + \frac{2}{3})^{x}ln(\frac{1}{3}cos(x) + \frac{2}{3}) - \frac{x(\frac{1}{3}cos(x) + \frac{2}{3})^{x}sin(x)}{3(\frac{1}{3}cos(x) + \frac{2}{3})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !