There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({e}^{(\frac{xln(2 + cos(x))}{3})} - 1){\frac{1}{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{3}} - \frac{1}{x^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{3}} - \frac{1}{x^{3}}\right)}{dx}\\=&\frac{-3{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{4}} + \frac{({e}^{(\frac{1}{3}xln(cos(x) + 2))}((\frac{1}{3}ln(cos(x) + 2) + \frac{\frac{1}{3}x(-sin(x) + 0)}{(cos(x) + 2)})ln(e) + \frac{(\frac{1}{3}xln(cos(x) + 2))(0)}{(e)}))}{x^{3}} - \frac{-3}{x^{4}}\\=&\frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}ln(cos(x) + 2)}{3x^{3}} - \frac{3{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{4}} - \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}sin(x)}{3(cos(x) + 2)x^{2}} + \frac{3}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !