Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{{a}^{x} + {b}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{{a}^{x} + {b}^{x}}\right)}{dx}\\=&(\frac{(\frac{(({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})) + ({b}^{x}((1)ln(b) + \frac{(x)(0)}{(b)})))}{({a}^{x} + {b}^{x})} - \frac{(0)log_{2}^{{a}^{x} + {b}^{x}}}{(2)})}{(ln(2))})\\=&\frac{{a}^{x}ln(a)}{({a}^{x} + {b}^{x})ln(2)} + \frac{{b}^{x}ln(b)}{({a}^{x} + {b}^{x})ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return