There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (930*1.55 + 311 + 930*1.5(0.01*178.9 - 0.01x))(1 + (0.005x + 0.15)(0.01x + 0.3))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.072075x^{2} + 2.16225x + 2.16225x + 0.01555x^{2} + 0.4665x + 0.4665x + 0.12478275x^{2} + 3.7434825x + 3.7434825x - 13.95x - 0.0006975x^{3} - 0.020925x^{2} - 0.020925x^{2} - 0.62775x + 4439.321975\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.072075x^{2} + 2.16225x + 2.16225x + 0.01555x^{2} + 0.4665x + 0.4665x + 0.12478275x^{2} + 3.7434825x + 3.7434825x - 13.95x - 0.0006975x^{3} - 0.020925x^{2} - 0.020925x^{2} - 0.62775x + 4439.321975\right)}{dx}\\=&0.072075*2x + 2.16225 + 2.16225 + 0.01555*2x + 0.4665 + 0.4665 + 0.12478275*2x + 3.7434825 + 3.7434825 - 13.95 - 0.0006975*3x^{2} - 0.020925*2x - 0.020925*2x - 0.62775 + 0\\=&0.14415x + 0.0311x + 0.2495655x - 0.0020925x^{2} - 0.04185x - 0.04185x - 1.833285\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !