There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{l}^{a}{x}^{(a - 1)}{e}^{{(lx)}^{a}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{l}^{a}{x}^{(a - 1)}{e}^{(lx)^{a}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{l}^{a}{x}^{(a - 1)}{e}^{(lx)^{a}}\right)}{dx}\\=&a({l}^{a}((0)ln(l) + \frac{(a)(0)}{(l)})){x}^{(a - 1)}{e}^{(lx)^{a}} + a{l}^{a}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)})){e}^{(lx)^{a}} + a{l}^{a}{x}^{(a - 1)}({e}^{(lx)^{a}}((((lx)^{a}((0)ln(lx) + \frac{(a)(l)}{(lx)})))ln(e) + \frac{((lx)^{a})(0)}{(e)}))\\=&\frac{a^{2}(lx)^{a}{x}^{(a - 1)}{e}^{(lx)^{a}}{l}^{a}}{x} - \frac{a{x}^{(a - 1)}{l}^{a}{e}^{(lx)^{a}}}{x} + \frac{a^{2}{x}^{(a - 1)}{l}^{a}{e}^{(lx)^{a}}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !