There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x + 6)}{(8 - 5x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(-5x + 8)} + \frac{6}{(-5x + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(-5x + 8)} + \frac{6}{(-5x + 8)}\right)}{dx}\\=&(\frac{-(-5 + 0)}{(-5x + 8)^{2}})x + \frac{1}{(-5x + 8)} + 6(\frac{-(-5 + 0)}{(-5x + 8)^{2}})\\=&\frac{5x}{(-5x + 8)^{2}} + \frac{30}{(-5x + 8)^{2}} + \frac{1}{(-5x + 8)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !