Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(ln({x}^{2} + 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(ln(x^{2} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(ln(x^{2} + 1))\right)}{dx}\\=&\frac{cos(ln(x^{2} + 1))(2x + 0)}{(x^{2} + 1)}\\=&\frac{2xcos(ln(x^{2} + 1))}{(x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2xcos(ln(x^{2} + 1))}{(x^{2} + 1)}\right)}{dx}\\=&2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})xcos(ln(x^{2} + 1)) + \frac{2cos(ln(x^{2} + 1))}{(x^{2} + 1)} + \frac{2x*-sin(ln(x^{2} + 1))(2x + 0)}{(x^{2} + 1)(x^{2} + 1)}\\=&\frac{-4x^{2}cos(ln(x^{2} + 1))}{(x^{2} + 1)^{2}} + \frac{2cos(ln(x^{2} + 1))}{(x^{2} + 1)} - \frac{4x^{2}sin(ln(x^{2} + 1))}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return