Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-3.99x + 7.41)}{(-1.42x + 4.15)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-3.99x}{(-1.42x + 4.15)} + \frac{7.41}{(-1.42x + 4.15)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-3.99x}{(-1.42x + 4.15)} + \frac{7.41}{(-1.42x + 4.15)}\right)}{dx}\\=&-3.99(\frac{-(-1.42 + 0)}{(-1.42x + 4.15)^{2}})x - \frac{3.99}{(-1.42x + 4.15)} + 7.41(\frac{-(-1.42 + 0)}{(-1.42x + 4.15)^{2}})\\=&\frac{-5.6658x}{(-1.42x + 4.15)(-1.42x + 4.15)} + \frac{10.5222}{(-1.42x + 4.15)(-1.42x + 4.15)} - \frac{3.99}{(-1.42x + 4.15)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return