There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{x}^{e}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2{x}^{e}\right)}{dx}\\=&2({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))\\=&\frac{2{x}^{e}e}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2{x}^{e}e}{x}\right)}{dx}\\=&\frac{2*-{x}^{e}e}{x^{2}} + \frac{2({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e}{x} + \frac{2{x}^{e}*0}{x}\\=&\frac{-2{x}^{e}e}{x^{2}} + \frac{2{x}^{e}e^{2}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !