There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{300}{(1 + {2}^{(4 - x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{300}{({2}^{(-x + 4)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{300}{({2}^{(-x + 4)} + 1)}\right)}{dx}\\=&300(\frac{-(({2}^{(-x + 4)}((-1 + 0)ln(2) + \frac{(-x + 4)(0)}{(2)})) + 0)}{({2}^{(-x + 4)} + 1)^{2}})\\=&\frac{300 * {2}^{(-x + 4)}ln(2)}{({2}^{(-x + 4)} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !