There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ \frac{({x}^{2} - 1)}{(xln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{ln(x)} - \frac{1}{xln(x)}\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{6227020800}{x^{14}ln^{2}(x)} + \frac{27151476480}{x^{14}ln^{3}(x)} + \frac{40763748096}{x^{14}ln^{4}(x)} - \frac{150791135040}{x^{14}ln^{5}(x)} - \frac{1242725920800}{x^{14}ln^{6}(x)} - \frac{4767541178400}{x^{14}ln^{7}(x)} - \frac{12827685190320}{x^{14}ln^{8}(x)} - \frac{26446157337600}{x^{14}ln^{9}(x)} - \frac{42952951641600}{x^{14}ln^{10}(x)} - \frac{55140269184000}{x^{14}ln^{11}(x)} - \frac{55220182617600}{x^{14}ln^{12}(x)} - \frac{41845579776000}{x^{14}ln^{13}(x)} - \frac{22666355712000}{x^{14}ln^{14}(x)} - \frac{7846046208000}{x^{14}ln^{15}(x)} - \frac{1307674368000}{x^{14}ln^{16}(x)} + \frac{1307674368000}{x^{16}ln(x)} + \frac{4339163001600}{x^{16}ln^{2}(x)} + \frac{12331635229440}{x^{16}ln^{3}(x)} + \frac{30341974222944}{x^{16}ln^{4}(x)} + \frac{64963520294400}{x^{16}ln^{5}(x)} + \frac{121160652849600}{x^{16}ln^{6}(x)} + \frac{196418311689600}{x^{16}ln^{7}(x)} + \frac{275340892947120}{x^{16}ln^{8}(x)} + \frac{330931560960000}{x^{16}ln^{9}(x)} + \frac{336787382131200}{x^{16}ln^{10}(x)} + \frac{285073012224000}{x^{16}ln^{11}(x)} + \frac{195577231449600}{x^{16}ln^{12}(x)} + \frac{104613949440000}{x^{16}ln^{13}(x)} + \frac{40973796864000}{x^{16}ln^{14}(x)} + \frac{10461394944000}{x^{16}ln^{15}(x)} + \frac{1307674368000}{x^{16}ln^{16}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !