Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of a is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{2{a}^{3}}{({a}^{2} - 1)}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2a^{3}}{(a^{2} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2a^{3}}{(a^{2} - 1)}\right)}{da}\\=&2(\frac{-(2a + 0)}{(a^{2} - 1)^{2}})a^{3} + \frac{2*3a^{2}}{(a^{2} - 1)}\\=&\frac{-4a^{4}}{(a^{2} - 1)^{2}} + \frac{6a^{2}}{(a^{2} - 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4a^{4}}{(a^{2} - 1)^{2}} + \frac{6a^{2}}{(a^{2} - 1)}\right)}{da}\\=&-4(\frac{-2(2a + 0)}{(a^{2} - 1)^{3}})a^{4} - \frac{4*4a^{3}}{(a^{2} - 1)^{2}} + 6(\frac{-(2a + 0)}{(a^{2} - 1)^{2}})a^{2} + \frac{6*2a}{(a^{2} - 1)}\\=&\frac{16a^{5}}{(a^{2} - 1)^{3}} - \frac{28a^{3}}{(a^{2} - 1)^{2}} + \frac{12a}{(a^{2} - 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return