There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(t - x)}^{(n - r + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (t - x)^{(n - r + 1)}\right)}{dx}\\=&((t - x)^{(n - r + 1)}((0 + 0 + 0)ln(t - x) + \frac{(n - r + 1)(0 - 1)}{(t - x)}))\\=&\frac{-n(t - x)^{(n - r + 1)}}{(t - x)} + \frac{r(t - x)^{(n - r + 1)}}{(t - x)} - \frac{(t - x)^{(n - r + 1)}}{(t - x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !