There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 1)log_{3}^{x} + e^{3}xlog_{3}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xlog_{3}^{x}e^{3} - log_{3}^{x} + xlog_{3}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xlog_{3}^{x}e^{3} - log_{3}^{x} + xlog_{3}^{x}\right)}{dx}\\=&log_{3}^{x}e^{3} + x(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))})e^{3} + xlog_{3}^{x}e^{3}*0 - (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))}) + log_{3}^{x} + x(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))})\\=&log_{3}^{x}e^{3} + \frac{e^{3}}{ln(3)} - \frac{1}{xln(3)} + log_{3}^{x} + \frac{1}{ln(3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( log_{3}^{x}e^{3} + \frac{e^{3}}{ln(3)} - \frac{1}{xln(3)} + log_{3}^{x} + \frac{1}{ln(3)}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))})e^{3} + log_{3}^{x}e^{3}*0 + \frac{e^{3}*0}{ln(3)} + \frac{e^{3}*-0}{ln^{2}(3)(3)} - \frac{-1}{x^{2}ln(3)} - \frac{-0}{xln^{2}(3)(3)} + (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))}) + \frac{-0}{ln^{2}(3)(3)}\\=&\frac{e^{3}}{xln(3)} + \frac{1}{x^{2}ln(3)} + \frac{1}{xln(3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !