There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(6.0215 - 0.0695{e}^{(0.4x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 0.0695x{e}^{(0.4x)} + 6.0215x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 0.0695x{e}^{(0.4x)} + 6.0215x\right)}{dx}\\=& - 0.0695{e}^{(0.4x)} - 0.0695x({e}^{(0.4x)}((0.4)ln(e) + \frac{(0.4x)(0)}{(e)})) + 6.0215\\=& - 0.0695{e}^{(0.4x)} - 0.0278x{e}^{(0.4x)} + 6.0215\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !