There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{2n}{1} + n)}^{n}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (3n)^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (3n)^{n}\right)}{dn}\\=&((3n)^{n}((1)ln(3n) + \frac{(n)(3)}{(3n)}))\\=&(3n)^{n}ln(3n) + (3n)^{n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !